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Abstract. Within the framework of the dielectric continuum model, interface optical(IO) and sur-
face optical(SO) phonon modes and the Fröhlich electron-IO (SO) phonon interaction Hamiltonian
in a multi-shell spherical system were derived and studied. Numerical calculation on CdS/HgS/H2O
and CdS/HgS/CdS/H2O spherical systems have been performed. Results reveal that there are two IO
modes and one SO mode for the CdS/HgS/H2O system, one SO mode and four IO modes whose frequen-
cies approach the IO phonon frequencies of the single CdS/HgS heterostructure with the increasing of the
quantum number l for CdS/HgS/CdS/H2O. It also showed that smaller l and SO phonon compared with
IO phonon, have more significant contribution to the electron-IO (SO) phonon interaction.

PACS. 74.25.Kc Phonons – 71.38.-k Polarons and electron-phonon interactions –
63.20.Kr Phonon-electron and phonon-phonon interactions

1 Introduction

In recent years, due to the great progress in semicon-
ductor nanotechnology, such as molecular-beam epitaxy,
metal-organic chemical-vapor deposition, many sophisti-
cated semiconductor heterostructures, for example, the
multi-layer planar quantum wells (QW), multi-layer cylin-
drical quantum well wire (QWW), and multi-layer spher-
ical quantum dot quantum well (QDQW) [1–3] can be
fabricated. It is well known that the phonon contribution
plays an important role in effecting the physical proper-
ties such as the electronic energy level, the bound ener-
gies of impurity and the carrier transportation in these
reduced-dimensional systems. Several authors have made
their contributions in studying the phonon modes and
electron-phonon interaction in various low dimensional
quantum systems. Mori and Ando [4] have investigated the
phonon modes in single and double heterostructure QWs
within the framework of a dielectric continuum (DC).
Jun-jie Shi et al. [5,6] have studied the phonon modes
in the coupled and step QWs with four and five lay-
ers of GaAs/AlxGa1−xAs, the electron-phonon interaction
Fröhlich Hamiltonian were also given and the electron-
interface phonon coupling functions were discussed.
Constantinou and Ridley [7] have investigated the guided
and interface optical phonon in cylindrical QWW by us-
ing a dispersive hydrodynamic continuum theory, and the
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dispersion relations and phonon potential functions distri-
bution were discussed. Recently, Xie et al. [8,9] have stud-
ied the phonon modes in QWWs with infinite and finite
potential boundary conditions and derived the electron-
phonon interaction Hamiltonians. Klimin et al. [10] have
determined the vibrational modes of inertial polarization
in the multilayer QWW and quantum dot (QD). Klein
et al. [11] have deduced phonon modes and electron-
phonon interaction Hamiltonian in spherical QD. Roca
and coworkers [12] have investigated the optical vibra-
tional modes in a QD by a macroscopic continuum,
coupling the mechanical vibrational amplitude and elec-
trostatic potential. Tkach et al. [13] have studied the
spherical nanoheterosystem: CdS/HgS/H2O, the phonon
modes were obtained under the DC model.

In the works mentioned above, the analytical macro-
scopic modes such as the hydrodynamic model [7] and
DC model [4,10,11,13] had been employed, and the mod-
els had their limits in describing optical modes in quan-
tum well structures. But as pointed out by Kun Huang
et al. [14], under the long-wavelength limit of the op-
tical vibrations and ignoring the dispersion of the bulk
longitudinal-optical (LO) and transverse-optical (TO)
phonons, the microscopic model and the DC model agreed
completely. Moreover, Rücker et al. [15,16] calculated the
electron-optical phonon scattering rates on the basis of
microscopic descriptions of the phonon spectra, results
reveals that the slab [4] and HZ [14] modes agree fairly
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Fig. 1. The schematic structure of the multilayer spherical
system.

well with the microscopic calculation. Because of the sim-
plicity and efficiency of the DC modes, especially for the
polaron effects [8,9], we will use it to study the optical
phonon modes in a multi-shell spherical system.

In general, there were some confined LO phonon
modes and some interface optical (IO) or surface op-
tical (SO) phonon modes in multi-layer heterostructure
quantum systems, but the couplings between the IO
(or SO) phonons and electrons were stronger compared
with the couplings between the LO phonons and elec-
trons [6,8,9]. For the sake of simplicity, in the present pa-
per, we will only investigate the properties of the IO or SO
phonon modes in an n-layer spherical nanoheterosystem.
The advantage of this work is that, for an n-layer shell
spherical system, (1) we have derived the orthonormal
relation for the polarization vector, (2) through the or-
thonormal relation and the dynamic equation of motion
of the crystal lattice, the Fröhlich electron-phonon inter-
action Hamiltonian has been derived, (3) from the discus-
sions of the IO (SO) phonon dispersion relations, phonon
potential distributions, and the electron-phonon coupling
functions for 3-layer and 4-layer systems, the characters
of IO (SO) phonon modes for an n-layer shell spherical
system have been concluded. The schema of our model is
given in Figure 1.

The paper is organized as follows: the IO and
SO phonon dispersion relations and the Fröhlich
electron-IO (SO) phonon interaction Hamiltonian were
deduced in Section 2; As an example, the numerical re-
sults for the dispersion relation, the electron-phonon cou-
pling functions for three layers of CdS/HgS/H2O and four
layers of CdS/HgS/CdS/H2O spherical system were given
and discussed in Section 3; In Section 4, we summarized
the main results and gave some extended conclusions.

2 Theory

Under the DC approximation, taking the phonon poten-
tial couplings between the IO and SO phonons into ac-
count, the IO and SO phonon potential in an n-layer shell
spherical system can be written as

φ(r) =



A1r
lYlm(θ, ϕ) 0 < r ≤ r1

(A2r
l +B2r

−l−1)Ylm(θ, ϕ) r1 < r ≤ r2
... ...
(Airl +Bir

−l−1)Ylm(θ, ϕ) ri−1 < r ≤ ri
... ...
Bnr

−l−1Ylm(θ, ϕ) rn−1 < r <∞

.

(1)

The phonon potential function and the normal component
of electric displace continuum at r = ri(i = 1, 2 to n− 1)
imply{
φilm|r=ri =φi+1,lm|r=ri
εi(ω)∂φilm∂r |r=ri =εi+1(ω)∂φi+1,lm

∂r |r=ri
, i=1, 2 to n− 1

(2)

with the dielectric function εi(ω) given by

εi(ω) = εi∞ +
εi0 − εi∞

1− ω2/ω2
TOi

, i = 1, 2 to n− 1, (3)

εn = εd (4)

where εi0, εi∞ are the static and high-frequency dielectric
constants of ith layer material, ωTOi is the corresponding
frequency of transverse-optical vibration, and εd is the di-
electric constant of the outer layer nonpolar surrounding.
We define

εilr
l−1
i = fi,

εi+1lr
l−1
i = f ′i ,

εi(l + 1)r−l−2
i = gi,

εi+1(l + 1)r−l−2
i = g′i,

rli = hi,

r−l−1
i = h′i,

(5)

then the dispersion relation of IO and SO phonon was
obtained via the below (2n− 2)×(2n− 2) determinant (6)∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h1 −h1 −h′1 0 0 0 0 0 0 0 0

f1 −f ′1 g′1 0 0 0 0 0 0 0 0

0 h2 h′2 −h2 −h′2 0 0 0 0 0 0

0 f2 −g2 −f ′2 g′2 0 0 0 0 0 0

0 0 0 0 0 ... 0 0 0 0 0

0 0 0 0 0 0 hn−2 h′n−2 −hn−2 −h′n−2 0

0 0 0 0 0 0 fn−2 −gn−2 −f ′n−2 g′n−2 0

0 0 0 0 0 0 0 0 hn−1 h′n−1 −h′n−1
0 0 0 0 0 0 0 0 fn−1 −gn−1 g′n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

(6)

Substituting equations (3, 4) into the above determinant
(6), the frequencies of IO and SO phonon could be solved.
When ω was worked out, via equation (3), it was easy to
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obtain the values of the dielectric functions εi(ω). Through
equations (2), Ai and Bi (i = 2, 3 to n − 1) can be ex-
pressed by A1 as{

Ai = M2i−3
M0

A1

Bi = M2i−2
M0

A1

, i = 2, 3 to n− 1 (7)

Bn =
M2n−3

M0
A1, (8)

B1 = An = 0 (9)

with

M0 =

∣∣∣∣∣∣∣∣∣∣∣∣

−h1 −h′1 0 0 0 0 0 0 0 0

−f ′1 g′1 0 0 0 0 0 0 0 0

h2 h′2 −h2 −h′2 0 0 0 0 0 0

f2 −g2 −f ′2 g′2 0 0 0 0 0 0

0 0 0 0 ... 0 0 0 0 0

0 0 0 0 0 hn−2 h′n−2 −hn−2 −h′n−2 0

0 0 0 0 0 fn−2 −gn−2 −f ′n−2 g′n−2 0

0 0 0 0 0 0 0 hn−1 h′n−1 −h′n−1

∣∣∣∣∣∣∣∣∣∣∣∣
,

(10)

Mj=

∣∣∣∣∣∣∣∣∣∣∣∣

−h1 −h′1 0 0 −h1 0 0 0 0 0

−f ′1 g′1 0 0 −f1 0 0 0 0 0

h2 h′2 −h2 −h′2 0 0 0 0 0 0

f2 −g2 −f ′2 g′2 0 0 0 0 0 0

0 0 0 0 ... 0 0 0 0 0

0 0 0 0 0 hn−2 h′n−2 −hn−2 −h′n−2 0

0 0 0 0 0 fn−2 −gn−2 −f ′n−2 g′n−2 0

0 0 0 0 0 0 0 hn−1 h′n−1 −h′n−1

∣∣∣∣∣∣∣∣∣∣∣∣
(11)

where M0 and Mj are (2n − 3)×(2n − 3) deter-
minants. It should be noticed that column matrix
(−h1,−f1, 0, 0, ..., 0, 0, 0) was at the jth column in Mj .
During the calculation procedure, the Cramer rule for
solving the linear equations was employed. Using equa-
tions (7, 8, 9), the phonon potential function (1) can be
given as

φ(r) =

A1M0r
lYlm(θ, ϕ) 0 < r ≤ r1

A1(M1r
l +M2r

−l−1)Ylm(θ, ϕ) r1 < r ≤ r2
... ...
A1(M2i−3r

l +M2i−2r
−l−1)Ylm(θ, ϕ) ri−1 < r ≤ ri

... ...
A1M2n−3r

−l−1Ylm(θ, ϕ) rn−1 < r <∞

·

(12)

The polarization fields for the IO and SO phonon modes
of the system are

PIO,SO
lm =8
>>>>>>><
>>>>>>>:

A1
1−ε1

4π
∇[M0r

lYlm(θ, ϕ)] 0 < r ≤ r1

A1
1−ε2

4π
∇[(M1r

l+M2r
−l−1)Ylm(θ, ϕ)] r1 < r ≤ r2

... ...
A1

1−εi
4π
∇[(M2i−3r

l+M2i−2r
−l−1)Ylm(θ, ϕ)] ri−1 < r ≤ ri

... ...

A1
1−εd

4π
∇[M2n−3r

−l−1Ylm(θ, ϕ)] rn−1 < r <∞.
(13)

Using the Green’s first identity∫
V

∇φ · ∇ϕd3r = −
∫
V

φ∇2ϕd3r+
∫
S

φ
∂ϕ

∂n
da, (14)

then we obtain the orthogonal relation for PIO,SO
lm∫

PIO,SO∗

l′m′ ·PIO,SO
lm d3r =

n−1∑
i=1

(1− εi)2

16π2

∫
Vi

∇φil′m′ · ∇φilmd3r

=
|A1|2

16π2

n−1∑
i=1

(1− εi)2

∫
Si

φil′m′
∂φilm
∂n

da (15)

=
|A1|2

16π2

n−1∑
i=1

(1− εi)2[lM2
2i−3(r2l−1

i − r2l−1
i−1 )

−M2i−3M2i−2(r−2
i − r−2

i−1)

−(l+ 1)M2
2i−2(r−2l−3

i − r−2l−3
i−1 )]

+(1− ε1)2lM2
0 r

2l−1
1 }δl′lδm′m.

In order to derive the free-phonon Hamiltonian, we need
the dynamic equation of motion of the crystal lattice [17]:

µü =µω2
0u+eEloc, (16)

P = n∗eu + n∗αEloc, (17)

where µ is the reduced mass of the ion pair and u = u+−
u− is the relative displacement of the positive and negative
ions, ω0 is the frequency associated with the short-range
force between ions, n∗ is the number of ion pairs per unit
volume, and α is the electronic polarizability per ion pair,
Eloc is the local field at the position of the ions.

The Hamiltonian of the free vibration is given by

Hph =
1
2

∫
[n∗µ

.
u · .u +n∗µω2

0u · u−n∗eu ·Eloc]d3r,

(18)

via equations (16, 17), we have [8,9]

Eloc =
µ

e
(ω2

0 − ω2)u, (19)

u =
P

n∗e[1 + (αµ/e2)(ω2
0 − ω2)]

· (20)

Substituting equations (19, 20) into equation (18), we then
get the Hamiltonian for the IO phonon or the SO phonon

HIO, SO =
1
2

∫ [
n∗µ

(
1

n∗e[1 + (αµ/e2)(ω2
0 − ω2)]

)2 .

P∗ ·
.

P

+n∗µω2

(
1

n∗e[1 + (αµ/e2)(ω2
0 − ω2)]

)2

P∗·P
]

d3r. (21)
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Using the orthogonal relation of the polarization vec-
tor (15) and choosing

|A1|−2 =
1

4πω2

{(
1

ε1 − ε10
− 1
ε1 − ε1∞

)−1

lM2
0 r

2l−1
1

+
n−1∑
i=2

[(
1

εi − εi0
− 1
εi − εi∞

)−1

×
[
lM2

2i−3(r2l−1
i − r2l−1

i−1 )−M2i−3M2i−2

× (r−2
i −r−2

i−1)−(l+1)M2
2i−2(r−2l−3

i −r−2l−3
i−1 )

] ]}
(22)

can make PIO,SO
lm form orthonormal and complete sets,

which can be used to express the IO and SO phonon field
HIO,SO and the electron-phonon interaction Hamiltonian
He−IO,SO. The IO and SO phonon field was given as

HIO,SO =
∑
lm

~ω
[
c†lmclm +

1
2

]
, (23)

where c†lm and clm were creation and annihilation operator
for IO and SO phonon of the (l,m)th mode. They satisfied
the commutative rules for bosons

[clm, c†l′m′ ] = δl′lδm′m,

[clm, cl′m′ ] = [c†lm, c†l′m′ ] = 0. (24)

The Fröhlich Hamiltonian describing the interaction be-
tween the electron and the IO and SO phonon was given by

He−IO,SO = −
∑
lm

Γ IO,SO
l (r)Ylm(θ, ϕ)

[
clm + c†lm

]
, (25)

where Γ IO,SO
l (r) was the coupling function which was de-

fined as

Γ IO,SO
l (r)

= fl ×



M0r
l r ≤ r1

(M1r
l +M2r

−l−1) r1 < r ≤ r2
... ...
(M2i−3r

l +M2i−2r
−l−1) ri−1 < r ≤ ri

... ...
M2n−3r

−l−1 rn−1 < r <∞

(26)

with

|fl|2 = 4π~ωe2

{(
1

ε1 − ε10
− 1
ε1 − ε1∞

)−1

lM2
0 r

2l−1
1

+
i=2∑
n−1

[(
1

εi − εi0
− 1
εi − εi∞

)−1

×
[
lM2

2i−3

(
r2l−1
i −r2l−1

i−1

)
−M2i−3M2i−2

(
r−2
i −r−2

i−1

)
− (l + 1)M2

2i−2

(
r−2l−3
i − r−2l−3

i−1

) ]]}−1

· (27)

3 Numerical results and discussion

In order to see more clearly the behaviors of the IO
and SO phonon modes and their interaction with the
electron, numerical calculations on three layers spherical
system of CdS/HgS/H2O and four layers spherical sys-
tem of CdS/HgS/CdS/H2O have been performed. The
material parameters of the system are [13]: ε0,CdS =
9.1, ε∞,CdS = 5.5, ωLO,CdS = 57.2 meV, ε0,HgS = 18.2,
ε∞,HgS = 11.36, ωLO,HgS = 27.8 meV, εd,H2O = 1.78.

Figures 2 and 3 show the dispersion of the IO
and SO modes in the CdS/HgS/H2O system and the
CdS/HgS/CdS/H2O system, respectively. Other than the
multilayer planar QW system [4–6], in which the IO
and SO phonon frequency was the continuum function
of wave-vector, the IO and SO frequencies in multilayer
spherical nanostructures were discrete functions of the
quantum number l. In Figure 2, we can see that the dis-
persion of mode 3 was more significant compared with
the other two modes. Furthermore, it can be seen that
only three frequency solutions for the CdS/HgS/H2O
system exist, the highest frequency mode 3 is between
ωTO,CdS and ωLO,CdS, and the frequencies of the other
two modes 1, 2 are between ωTO,HgS and ωLO,HgS. From
Figure 3, it is observed that there exist five solutions for
the CdS/HgS/CdS/H2O system, three frequencies of them
are between ωTO,HgS and ωLO,HgS, the frequencies of the
other two are between ωTO,CdS and ωLO,CdS. It is interest-
ing to note that the frequencies of the modes 1 and 2 ap-
proach the same value while the frequencies of the modes 3
and 4 approach another value with the increase of l. This
can be explained as following: with the increase of l, the
phonon potential functions becomes steeper, which make
the potential coupling between every interface less and
less likely, so the dispersion frequencies approach the fre-
quencies value of single CdS/HgS heterostructures. The
mode 5 was the SO mode, which can be seen clearly in
Figure 7.

The electron-IO (SO) phonon coupling functions Γl(r)
of these two systems as the function of r for l = 1 were
plotted in Figure 4 and 5, respectively. From them, it was
clearly seen where every mode was localized. In Figure 4,
we can observe that the modes 1 and 3 mainly localized
at the interface r = 2.35 nm, and mode 2 was bound
at the surface, which can be looked at as a SO phonon.
The SO phonon contribution to Γl(r) was between that of
modes 1, 2 for l = 1 and exceeded that of the other two
modes when l > 1 which was quite obvious in Figure 6.
Through Figure 5, it can be found that modes 2 and 3
were mainly localized at the first interface, r = 2.35 nm,
and mode 1 was mainly bound at the second interface
r = 3.35 nm. For modes 4, 5, because the potential cou-
pling is strong for the quantum number l = 1, the po-
tential distribution at the three interface were average
comparatively, but in Figure 7 it can be seen that the
mode 4 was mainly bound at the second interface, and
the mode 5 was the SO phonon mode which was mainly
localized at the surface when l > 3.

In Figure 6 and Figure 7, we show the absolute val-
ues |Γl(r)| as a function of the quantum number l for the
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Fig. 2. Dispersion curves of the IO and SO phonon modes for the spherical CdS/HgS/H2O system with thicknesses
2.35 nm/4.35 nm/∞.

Fig. 3. Dispersion curves of the IO and SO phonon modes
for the spherical CdS/HgS/CdS/H2O system with thicknesses
2.35 nm/3.35 nm/5.35 nm/∞.

Fig. 4. The coupling function Γl(r) as a function of r
for the spherical CdS/HgS/H2O system with thicknesses
2.35 nm/4.35 nm/∞, and l = 1.

Fig. 5. The coupling function Γl(r) as a function of r for
the spherical CdS/HgS/CdS/H2O system with thicknesses
2.35 nm/3.35 nm/5.35 nm/∞, and l = 1.

Fig. 6. Absolute values |Γl(r)| as functions of the quantum
number l for the CdS/HgS/H2O system with the same struc-
ture as in Figure 2.
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Fig. 7. Absolute values |Γl(r)| as functions of the quantum
number l for the CdS/HgS/CdS/H2O system with the same
structure as in Figure 3.

CdS/HgS/H2O system and the CdS/HgS/CdS/H2O sys-
tem, respectively. According to Figure 3, we have chosen
r = 2.35 nm for modes 1, 3 and r = 4.35 nm for mode 2 in
Figure 6. The figure shows that the values of modes 1 and 3
decrease monotonously with the increase of l, while that of
mode 2 has a maximum value at l = 2. It was also noticed
that the coupling between the electron-SO phonon were
more drastic than that of the other two except for l = 1.
According to Figure 4, we have chosen r = 2.35 nm for
modes 2, 3, r = 3.35 nm for modes 1, 4, and r = 5.35 nm
for mode 5 in Figure 7. |Γl(r)| of modes 1, 2, 4 decrease,
and that of mode 3 has a slight increase as the increase
of l monotonously, while that of mode 5 increases to a
maximum value at l = 2, then decreases after it. In the
whole range of l, except for l = 1, the electron-SO phonon
coupling is more significant.

4 Summary and conclusions

In this paper, the IO and SO phonon modes, electron-
IO (SO) phonon Fröhlich interaction Hamiltonian in an
n-layer shell spherical system have been investigated in de-
tail. Numerical calculation on three and four layer spheri-
cal systems have been performed. The main results were:

1. For CdS/HgS/H2O systems, there were three fre-
quency solutions for the IO (SO) phonon modes, two
of them were IO modes, and one was the SO mode.
The electron-IO (SO) phonon interaction for a smaller
quantum number l were more important, and the SO
phonon has a significant contribution, compared with the
IO phonon, to Γl(r).

2. For four layer CdS/HgS/CdS/H2O systems,
there were five frequency solutions for IO (SO) phonon
modes, two frequency values of them were between
ωTO,CdS, and ωLO,CdS, three frequency values lie between
ωTO,HgS, and ωLO,HgS. Furthermore, it has been found

that, with the increase of l, the frequencies of two modes
converge to the same value, whilst that of another two
modes converge to a different value. A reason for this ob-
servation has also been given. We also found that there
were two IO modes on each interface and only one SO
mode on the surface, and small l and SO mode make im-
portant contributions to the electron-IO (SO) interaction.

From the results of three and four layer spherical
systems, it is reasonable to draw a conclusion, for n-
layers CdS/HgS/.../H2O spherical system, that the num-
ber of IO (SO) modes was 2n − 3 (n ≥ 3). There is only
one SO mode and 2n−4 IO phonon modes whose frequen-
cies approach the frequencies of single heterostructure as
l approach infinity in the system. On each interface there
exits two IO phonon modes, the frequency of one is be-
tween ωTO,CdS, and ωLO,CdS, the frequency of the other
one is between ωTO,HgS, and ωLO,HgS.

This work is supported by Guangdong Provincial Natural Sci-
ence Foundation of China.
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